J. Electrochem. Sci. Eng.  

Deposition efficiency in the preparation of ozone-producing nickel and antimony doped tin oxide anodes

Staffan Sandin, Alicia Cheritat, Joakim Bäckström, Ann Cornell


The influence of precursor salts in the synthesis of nickel and antimony doped tin oxide (NATO) electrodes using thermal decomposition from dissolved chloride salts was investigated. The salts investigated were SnCl4×5H2O, SnCl2×2H2O, SbCl3 and NiCl2×6H2O. It was shown that the use of SnCl4×5H20 in the preparation process leads to a tin loss of more than 85 %. The loss of Sb can be as high as 90 % while no indications of Ni loss was observed. As a consequence, the concentration of Ni in the NATO coating will be much higher than in the precursor solution. This high and uncontrolled loss of precursors during the preparation process will lead to an unpredictable composition in the NATO coating and will have negative economic and environmental effects. It was found that using SnCl2×2H20 instead of SnCl4×5H2O can reduce the tin loss to less than 50 %. This tin loss occurs at higher temperatures than when using SnCl4×5H2O where the tin loss occurs from 56 – 147 °C causing the composition to change both during the drying (80 – 110 °C) and calcination (460 -550 °C) steps of the preparation process. Electrodes coated with NATO based on the two different tin salts were investigated for morphology, composition, structure, and ozone electrocatalytic properties.


NATO, ATO, tin chloride precursor, thermal decomposition, TGA, deposition, efficiency, dopant enrichment, ozone electrocatalysis


K. Arihara, C. Terashima, and A. Fujishima, Journal of the Electrochemical Society, 154 (2007) E71–E75.

P. C. Foller and C. W. Tobias, Journal of The Electrochemical Society 129 (1982) 506–515.

L. M. Da Silva, L. A. De Faria, and J. F. C. Boodts, Electrochimica Acta 48 (2003) 699–709.

A. Kraft, M. Stadelmann, M. Wunsche, and M. Blaschke, Electrochemistry Communications 8 (2006) 883–886.

P. C. Foller and C. W. Tobias, The Journal of Physical Chemistry 85 (1981) 3238–3244.

S. Stucki, H. Baumann, H. J. Christen, and R. Kötz, Journal of Applied Electrochemistry 17 (1987) 773–778.

P. A. Christensen, W. F. Lin, H. Christensen, A. Imkum, J. M. Jin, G. Li, and C. M. Dyson, Ozone: Science & Engineering 31 (2009) 287–293.

S. A. Cheng and K. Y. Chan, Electrochemical and Solid-State Letters 7 (2004) D4–D6.

Y. H. Wang, S. Cheng, K. Y. Chan, and X. Y. Li, Journal of The Electrochemical Society 152 (2005) D197–D200.

J. B. Parsa, M. Abbasi, and A. Cornell, Journal of The Electrochemical Society 159 (2012) D265–D269.

J. Basiriparsa and M. Abbasi, Journal of Solid State Electrochemistry 16 (2012) 1011–1018.

P. A. Christensen and A. Imkum, Ozone: Science & Engineering 33 (2011) 389–395.

P. A. Christensen, K. Zakaria, and T. P. Curtis, Ozone: Science & Engineering 34 (2012)


P. A. Christensen, K. Zakaria, H. Christensen, and T. Yonar, Journal of the Electrochemical Society 160 (2013) H405–H413.

H. Shekarchizade and M. K. Amini, International Journal of Electrochemistry 2011 (2011) 1–13.

Y. H. Wang, Z. Z. Nie, and Y. R. Liang, Advanced Materials Research 734-737 (2013) 2155–2158.

S. Y. Yang, D. Kim, and H. Park, Environmental Science and Technology 48 (2014) 2877–2884.

P. A. Christensen, P. S. Attidekou, R. G. Egdell, S. Maneelok, D. A. C. Manning, and R. Palgrave, The Journal of Physical Chemistry C 121 (2017) 1188–1199.

W. M. Haynes, editor, CRC Handbook of Chemistry and Physics, 97th Edition (Internet Version 2017), CRC Press/Taylor & Francis, Boca Raton, FL., URL http://hbcponline.com/.

C. Comninellis and G. P. Vercesi, Journal of Applied Electrochemistry 21 (1991) 136–142.

Y. H. Wang, G. Li, Q. Y. Chen, X. Geng, and W. Yan, Journal of Solid State Electrochemistry 17 (2013) 1985–1989.

X. Zhong, B. Yang, X. Zhang, J. Jia, and G. Yi, Particuology 10 (2012) 365–370.

A. Chen, X. Zhu, J. Xi, H. Qin, Z. Ji, and K. Zhu, Journal of Alloys and Compounds 684 (2016) 137–142.

Y. H. Wang, K. Y. Chan, X. Y. Li, and S. K. So, Chemosphere 65 (2006) 1087–1093.

Z. Sun, H. Zhang, X. Wei, R. Du, and X. Hu, Journal of the Electrochemical Society 162 (2015) H590–H596.

S. Y. Yang, W. Choi, and H. Park, ACS Applied Materials & Interfaces 7 (2015) 1907–1914.

R. Al-Gaashani, S. Radiman, N. Tabet, and A. R. Daud, Materials Science and Engineering: B 177 (2012) 462–470.

E. Horváth, J. Kristóf, H. Nasser, R. L. Frost, A. De Battisti, and Á. Rédey, Applied Surface Science 242 (2005) 13–20.

A. Nemes, I. Fábián, and G. Gordon, Ozone: Science & Engineering 22 (2000) 287–304.

T. Ahmad, S. Khatoon, and K. Coolahan, Journal of the American Ceramic Society 99 (2016) 1207–1211.

M. E. García-Clavel, M. J. Martinez-Lope, and M. T. Casais-Alvarez, Thermochimica Acta 118 (1987) 123–134.

K. W. Kim, P. S. Cho, J. H. Lee, and S. H. Hong, Journal of Electroceramics 17 (2006) 895–898.

N. Deb, S. D. Baruah, N. Sen Sarma, and N. N. Dass, Thermochimica Acta 320 (1998) 53–67.

D. Zhan, C. Cong, K. Diakite, Y. Tao, and K. Zhang, Thermochimica Acta 430 (2005) 101–105.

DOI: http://dx.doi.org/10.5599/jese.374

jESE : : Open Access Journal  :  : ISSN 1847-9286