J. Electrochem. Sci. Eng.  

Ellipsometric measurement of thickness of tin oxides grown by voltammetry in phosphate solution of pH 8.7

Tiago Brandão Costa, Tania Maria Cavalcanti Nogueira, Ladário da Silva


The voltammetry induced growth of tin oxides on tin in the buffer solution of 0.18 mol L-1 Na2H2PO4 and 0.18 mol L-1 KH2PO4 (pH 8.7) has been studied. Ex-situ ellipsometric mea­surements were made in an order to determine thicknesses of the grown oxides. From these results the film volume per charge unit, Vf, was calculated for different charge den­sities of the film. This parameter was used to calculate the variable ionic resistivity of the film, ρf, considered by the Ohmic model for the case of voltammetric growth of oxides on metals having a previously existing continuous film. Tin oxide films grown at 2 mV s-1 showed to be less dense for values of charge density below 50 C m-2, having Vf near
5.7x10-10 m3 C-1. For higher values of charge density, tin oxide films become denser, having Vf near 0.5x10-10 m3 C-1. The calculated values of the variable ionic resistivity of the film during voltammetric growth showed that ρf passes through a minimum (justifying the maximum in current densities). This behavior was also found by other authors in the cases of Zn, Nb, Ni and galvanized steel sheets.


Ellipsometry, Tin oxide, Ohmic model, Voltammetry, Variable ionic resistivity

Full Text:

PDF (1.386 kB)


A. S. Gliozzi, A. L. Alexe-Ionescu, G. Barbero, Phys. Lett. A. 379 (2015) 2657-2660.

A. L. Alexe-Ionescu , G. Barbero , S. Bianco, G. Cicero, C.F. Pirri, J. Electroanal. Chem. 669 (2012) 21-27.

G. Barbero, P. Batallioto, A. M. Figueiredo Neto, J. Appl. Phys. 101 (2007) 054102(1)-054102(5).

C. V. D’Alkaine, P. C. Tulio, M. A. C. Berton, Electrochim. Acta 49 (2004) 1989-1997.

C. V. D’Alkaine, L. M. N. Souza, F. C. Nart, Corr. Sci. 34 (1993) 129-149.

C. V. D’Alkaine, M. N. Boucherit, J. Electrochem. Soc. 10 (1997) 3331-3336.

C. V. D’Alkaine, M. A. Santanna, J. Electroanal. Chem. 457 (1998) 13-21.

T. B. Costa, C. V. D’Alkaine, T. M. C. Nogueira, 67th ABM International Congress, Voltammetric growth of ZnO on galvanized steel sheets containing Sb or Pb, Rio de Janeiro, Rio de Janeiro, 2012, p. 3162.

M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, Pergamon, Oxford, 1966.

S. D. Kapusta, N. Hackerman, Electrochim. Acta 25 (1980) 1625-1639.

M. Metikos-Hukovic, A. Resetic, V. Gvozdic, Electrochim. Acta 40 (1995) 1777-1779.

T. Hurlen, Electrochem. Acta 39 (1994) 1359-1364.

S. A. M. Refaey, Electrochim. Acta 41 (1996) 2545-2549.

V. Brunetti, M. L. Teijelo, J. Electroanal. Chem. 613 (2008) 9-15.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications. John Wiley & Sons Ltd, Tokyo, Japan, 2003.

D. E. Aspnes, Thin Solid Films 571(3) (2014) 334-344.

K. Vedam, Thin Solid Films 313–314 (1998) 1 - 9.

L. Arsov, I. Mickova, J. Electrochem. Sci. Eng. 5(4) (2015) 221-230.

I. Arsova, Lj. Arsov, N. Hebestreit, A. Anders, W. Plieth, J. Solid State Electrochem. 11 (2007) 209-214.

L. F. N. Guedes et al. J. Solid State Electrochem 20 (2016) 2517-2523.

A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, John Wiley & Sons, New York, United States, 2001.

K. Wasa, M. Kitabatake, H. Adachi, Thin films Materials Technology: sputtering of compound Materials, William Andrew, New York, United States, 2004, p.28.

H. Do Duc, P. Tissot, Corros. Sci. 19 (1979) 179-190.

C. A. Gervasi, P. E. Alvarez, Corros. Sci. 47 (2005) 69 -78.

S. D. Kapusta, N. Hackerman, Electrochim. Acta 25 (1980) 949-955.

S. D. Kapusta, N. Hackerman, Electrochim. Acta 25 (1980) 1001-1006.

S. D. Kapusta, N. Hackerman, Electrochim. Acta 25 (1982) 1886-1889.

M. Metikos-Hukovic, M. Seruga, F. Ferina, Ber. Bunsenges, Phys. Chem. 96 (1992) 799-805.

A. Ammar, S. Darwish, M. W. Khalil, S. El-Taher, Electrochim. Acta 33 (1988) 231-238.

DOI: http://dx.doi.org/10.5599/jese.326


  • There are currently no refbacks.

jESE : : Open Access Journal  :  : ISSN 1847-9286